Aerodynamic Shape Optimisation of a Camber Morphing Airfoil and Noise Estimation

Author:

Valldosera Martinez Robert,Afonso FredericoORCID,Lau FernandoORCID

Abstract

In order to decrease the emitted airframe noise by a two-dimensional high-lift configuration during take-off and landing performance, a morphing airfoil has been designed through a shape design optimisation procedure starting from a baseline airfoil (NLR 7301), with the aim of emulating a high-lift configuration in terms of aerodynamic performance. A methodology has been implemented to accomplish such aerodynamic improvements by means of the compressible steady RANS equations at a certain angle of attack, with the objective of maximising its lift coefficient up to equivalent values regarding the high-lift configuration, whilst respecting the imposed structural constraints to guarantee a realistic optimised design. For such purposes, a gradient-based optimisation through the discrete adjoint method has been undertaken. Once the optimised airfoil is achieved, unsteady simulations have been carried out to obtain surface pressure distributions along a certain time-span to later serve as the input data for the aeroacoustic prediction framework, based on the Farassat 1A formulation, where the subsequent results for both configurations are post-processed to allow for a comparative analysis. Conclusively, the morphing airfoil has proven to be advantageous in terms of aeroacoustics, in which the noise has been reduced with respect to the conventional high-lift configuration for a comparable lift coefficient, despite being hampered by a significant drag coefficient increase due to stall on the morphing airfoil’s trailing edge.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3