Aeroacoustic and Aerodynamic Adjoint-Based Shape Optimization of an Axisymmetric Aero-Engine Intake

Author:

Monfaredi Morteza1ORCID,Asouti Varvara1ORCID,Trompoukis Xenofon1ORCID,Tsiakas Konstantinos1,Giannakoglou Kyriakos1

Affiliation:

1. Parallel CFD & Optimization Unit, School of Mechanical Engineering, National Technical University of Athens, 15772 Athens, Greece

Abstract

A continuous adjoint-based aeroacoustic optimization, based on a hybrid model including the Ffowcs Williams–Hawkings (FW–H) acoustic analogy, to account for the multidisciplinary design of aero-engine intakes with an axisymmetric geometry, is presented. To optimize such an intake, the generatrix of its lips is parameterized using B-Splines, and the energy contained in the sound pressure spectrum, at the blade passing frequency at receivers located axisymmetrically around the axis of the engine, is minimized. The engine is not included in the optimization and manifests its presence through an independently computed time-series of static pressure over the annular boundary of the simulation domain that corresponds to the inlet to the fan. Taking advantage of the case axisymmetry, the steady 3D RANS equations are solved in the rotating frame of reference and post-processed to compute the flow quantities’ time-series required by the FW–H analogy. The numerical solution of the unsteady flow equations and the otherwise excessive overall cost of the optimization are, thus, avoided. The objective function gradient is computed using the continuous adjoint method, coupled with the analytical differentiation of the FW–H analogy. The adjoint equations are also solved in the rotating frame via steady solver.

Funder

European Union

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3