Affiliation:
1. State Key Laboratory of Laser Propulsion & Application, Department of Aerospace and Technology, Space Engineering University, Beijing 101416, China
Abstract
The ejection of the plasma plume produced by laser ablation is an important process for inducing mechanical effects. Therefore, in this paper, the characteristics of the plasma plume are investigated in order to analyze the impulse coupling mechanism with two laser spot diameters, 300 μm and 1100 μm, respectively. The impulse generated by laser irradiating the copper target was measured by the torsion pendulum, and the plasma plume was investigated using fast photography and optical emission spectroscopy. The experimental results show that the optimal laser intensity is independent of the beam spot size. However, when the laser intensity is greater than 2.8 × 109 W/cm2, the impulse coupling coefficient with the small beam spot starts to gradually decrease, while that with the large beam spot tends to saturate. Additionally, the stream-like structure and the semi-ellipsoid structure of the plasma plume were observed, respectively. Furthermore, the electron number density was estimated using the Stark broadening method, and the effect of the plasma plume on the impulse coupling coefficient was discussed. The results provide a technical reference for several applications including orbital debris removal with lasers, laser thrusters, and laser despinning.
Funder
National Natural Science Foundation of China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献