Effect of laser wavelength on ablation propulsion and plasma characteristics with acrylonitrile butadiene styrene target

Author:

Xu YongfengORCID,Yang LiangORCID,Li Jiaqi,Zhou Dongjian,Li Qingwei,Shi Wenbo,Jin Yuqi

Abstract

Abstract Propulsion performance produced by laser ablation of polymer made of acrylonitrile butadiene styrene is experimentally investigated using the first, second, and third harmonics of a Nd: YAG laser. A ballistic pendulum is employed to assess the impulse and coupling coefficient for laser propulsion application. Fast photography, target ablation, and optical emission spectroscopy are proposed to analyze the energy coupling characteristic. The impulse and coupling coefficient under different pressures are demonstrated to depend on the target ablation and plasma properties which are relevant to laser wavelength. As the laser wavelength decreases, the crater depth and ablation mass are enhanced. Meanwhile, the plasma plume separates at atmospheric pressure and its length extends continuously in the low-pressure range. As a result, plasma including more ejected particles with higher velocity contributes to obtaining excellent impulse and coupling coefficient. In addition, the decreased electron density and temperature indicate higher collision frequency and photoionization dominate rather than inverse bremsstrahlung absorption at shorter laser wavelengths. This work provides a better understanding of the energy conversion mechanism and a reference for improving propulsion performance.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3