Abstract
This paper addresses the problem of leader–follower synchronization of uncertain Euler–Lagrange systems under input constraints. The problem is solved in a distributed model reference adaptive control framework that includes positive μ-modification to address input constraints. The proposed design has the distinguishing features of updating the gains to synchronize the uncertain systems and of providing stable adaptation in the presence of input saturation. By using a matching condition assumption, a distributed inverse dynamics architecture is adopted to guarantee convergence to common dynamics. The design is studied analytically, and its performance is validated in simulation using spacecraft dynamics.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献