Mission Performance Analysis of Hybrid-Electric Regional Aircraft

Author:

Palaia Giuseppe1ORCID,Abu Salem Karim1ORCID

Affiliation:

1. Department of Civil and Industrial Engineering, University of Pisa, Via Caruso 8, 56122 Pisa, Italy

Abstract

This article discusses the mission performance of regional aircraft with hybrid-electric propulsion. The performance analyses are provided by mission simulations tools specifically developed for hybrid-electric aircraft flight dynamics. The hybrid-electric aircraft mission performance is assessed for the design point, identified by top level requirements, and for off-design missions, within the whole operating envelope. This work highlights that the operating features of hybrid-electric aircraft differ from those of aircraft of the same category with conventional thermal propulsion. This assessment is processed by properly analysing the aircraft payload–range diagram, which is a very effective tool to assess the operating performance. The payload–range diagram shape of hybrid-electric aircraft can vary as multiple combinations of the masses of batteries, fuel and payload to be transported on board are possible. The trade-off in the power supply strategies of the two power sources to reduce fuel consumption or to extend the maximum flight distance is described in detail. The results show that the hybrid-electric propulsion integrated on regional aircraft can lead to benefits in terms of environmental performance, through savings in direct fuel consumption, or alternatively in operating terms, through a significant extension of the operating envelope.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference86 articles.

1. Aviation and global climate change in the 21st century;Lee;Atmos. Environ.,2009

2. From blue skies to green skies: Engine technology to reduce the climate-change impacts of aviation;Parker;Technol. Anal. Strat. Manag.,2009

3. Civil aircraft design priorities: Air quality? Climate change? Noise?;Brooker;Aeronaut. J.,2006

4. European Commission (2021). Reducing Emissions from Aviation, European Commission. Available online: https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-aviation_en.

5. Aerodynamic technologies to improve aircraft performance;Abbas;Aerosp. Sci. Technol.,2013

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3