Explanation of Machine-Learning Solutions in Air-Traffic Management

Author:

Xie YibingORCID,Pongsakornsathien Nichakorn,Gardi AlessandroORCID,Sabatini RobertoORCID

Abstract

Advances in the trusted autonomy of air-traffic management (ATM) systems are currently being pursued to cope with the predicted growth in air-traffic densities in all classes of airspace. Highly automated ATM systems relying on artificial intelligence (AI) algorithms for anomaly detection, pattern identification, accurate inference, and optimal conflict resolution are technically feasible and demonstrably able to take on a wide variety of tasks currently accomplished by humans. However, the opaqueness and inexplicability of most intelligent algorithms restrict the usability of such technology. Consequently, AI-based ATM decision-support systems (DSS) are foreseen to integrate eXplainable AI (XAI) in order to increase interpretability and transparency of the system reasoning and, consequently, build the human operators’ trust in these systems. This research presents a viable solution to implement XAI in ATM DSS, providing explanations that can be appraised and analysed by the human air-traffic control operator (ATCO). The maturity of XAI approaches and their application in ATM operational risk prediction is investigated in this paper, which can support both existing ATM advisory services in uncontrolled airspace (Classes E and F) and also drive the inflation of avoidance volumes in emerging performance-driven autonomy concepts. In particular, aviation occurrences and meteorological databases are exploited to train a machine learning (ML)-based risk-prediction tool capable of real-time situation analysis and operational risk monitoring. The proposed approach is based on the XGBoost library, which is a gradient-boost decision tree algorithm for which post-hoc explanations are produced by SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME). Results are presented and discussed, and considerations are made on the most promising strategies for evolving the human–machine interactions (HMI) to strengthen the mutual trust between ATCO and systems. The presented approach is not limited only to conventional applications but also suitable for UAS-traffic management (UTM) and other emerging applications.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding imbalanced data: XAI & interpretable ML framework;Machine Learning;2024-01-16

2. Cybersecurity Risks and Threats in Avionics and Autonomous Systems;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

3. Explainability and Real-Time in Music Information Retrieval: Motivations and Possible Scenarios;2023 4th International Symposium on the Internet of Sounds;2023-10-26

4. Artificial Intelligence in Aviation: New Professionals for New Technologies;Applied Sciences;2023-10-25

5. HMI Design for Explainable Machine Learning Enhanced Risk Detection in Low-Altitude UAV Operations;2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3