A330-300 Wake Encounter by ARJ21 Aircraft

Author:

Luo Haotian1,Pan Weijun1,Wang Yidi1,Luo Yuming2

Affiliation:

1. School of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China

2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract

Today, aviation has grown significantly in importance. However, the challenge of flight delays has become increasingly severe due to the need for safe separation between aircraft to mitigate wake turbulence effects. The primary emphasis of this investigation resides in elucidating the evolutionary attributes of wake vortices in homogeneous isotropy turbulence. The large eddy simulation (LES) method is used to scrutinize the dynamic evolution of wake vortices engendered by an A333 aircraft in the atmospheric milieu and assess its ramifications on the ARJ21 aircraft. The research endeavor commences by formulating an LES methodology for the evolution of aircraft wake vortices, integrating adaptive grid technology to reduce the necessary grid volume significantly. This approach enables the implementation of axial and non-axial grid adaptive refinement, leading to more accurate simulations of both axial and non-axial vortices. Numerical simulations are conducted using the LES approach to scrutinize three distinct rates of turbulence dissipation amidst the ambient atmospheric turbulence, and the results are juxtaposed with Lidar measurements (Wind3D 6000 LiDAR) of wake vortices acquired at Chengdu Shuangliu International Airport (CTU). Subsequently, the rolling moment of the following aircraft is calculated, and three-dimensional hazard zones are determined for the A333. It is found that during the approach phase, the wake turbulence separation minima for an ARJ21 (CAT-F) following an A333 (CAT-B) is 3.35 NM, which represents a reduction of approximately 33% compared to ICAO RECAT (Wake Turbulence Re-categorization). The findings validate the dependability of the fine-grained mesh used in the vortex core region, engendered through the adaptive grid method, which proficiently captures the Crow instability and the interconnected phenomena of vortices in the numerical examination of aircraft wake. The safety of wake encounters primarily depends on the magnitude of environmental turbulence and the development of structural instability in wake vortices.

Funder

National Natural Science Foundation of China

Civil Aviation Administration of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3