Constraint Replacement-Based Design for Additive Manufacturing of Satellite Components: Ensuring Design Manufacturability through Tailored Test Artefacts

Author:

Borgue ,Müller ,Leicht ,Panarotto ,Isaksson

Abstract

Additive manufacturing (AM) is becoming increasingly attractive for aerospace companies due to the fact of its increased ability to allow design freedom and reduce weight. Despite these benefits, AM comes with manufacturing constraints that limit design freedom and reduce the possibility of achieving advanced geometries that can be produced in a cost-efficient manner. To exploit the design freedom offered by AM while ensuring product manufacturability, a model-based design for an additive manufacturing (DfAM) method is presented. The method is based on the premise that lessons learned from testing and prototyping activities can be systematically captured and organized to support early design activities. To enable this outcome, the DfAM method extends a representation often used in early design, a function–means model, with the introduction of a new model construct—manufacturing constraints (Cm). The method was applied to the redesign, manufacturing, and testing of a flow connector for satellite applications. The results of this application—as well as the reflections of industrial practitioners—point to the benefits of the DfAM method in establishing a systematic, cost-efficient way of challenging the general AM design guidelines found in the literature and a means to redefine and update manufacturing constraints for specific design problems.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference53 articles.

1. Development and qualification of additively manufactured parts for space;O’Brien,2018

2. Hybrid Metal/Composite Lattice Structures: Design for Additive Manufacturing

3. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints

4. Introduction to Additive Manufacturing Technology—A Guide for Designers and Engineers,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3