Abstract
This paper introduces a numerical tool developed for the design and optimization of axial-symmetrical hybrid composite/metal structures. It is assumed that the defined structures are produced by means of two different processes: Additive Layer Manufacturing (ALM) for the metallic parts and Filament Winding (FW) for the composite parts. The defined optimization procedure involves two specific software: ANSYS and ModeFrontier. The former is dedicated to the production of the geometrical and FE models, to the structural analysis, and to the post-process, focusing on the definition of the Unit Cells for the modelling of the metal part. The latter is dedicated to the definition of the best design set and thus to the optimization flow management. The core of the developed numerical procedure is the routine based on the Ansys Parametric Design Language (APDL), which allows an automatic generation of any geometrical model defined by a generic design set. The developed procedure is able to choose the best design, in terms of structural performance, changing the lattice metallic parameters (number of unit cells and their topology) and the composite parameters (number of plies and their orientation). The introduced numerical tool has been used to design several hybrid structures configurations. These configurations have been analysed in terms of mechanical behaviour under specific boundary conditions and compared to similar conventional metal structure.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献