Constrained Motion Planning of 7-DOF Space Manipulator via Deep Reinforcement Learning Combined with Artificial Potential Field

Author:

Li YinkangORCID,Li Danyi,Zhu Wenshan,Sun Jun,Zhang Xiaolong,Li ShuangORCID

Abstract

During the on-orbit operation task of the space manipulator, some specific scenarios require strict constraints on both the position and orientation of the end-effector, such as refueling and auxiliary docking. To this end, a novel motion planning approach for a space manipulator is proposed in this paper. Firstly, a kinematic model of the 7-DOF free-floating space manipulator is established by introducing the generalized Jacobian matrix. On this basis, a planning approach is proposed to realize the motion planning of the 7-DOF free-floating space manipulator. Considering that the on-orbit environment is dynamical, the robustness of the motion planning approach is required, thus the deep reinforcement learning algorithm is introduced to design the motion planning approach. Meanwhile, the deep reinforcement learning algorithm is combined with artificial potential field to improve the convergence. Besides, the self-collision avoidance constraint is considered during planning to ensure the operational security. Finally, comparative simulations are conducted to demonstrate the performance of the proposed planning method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3