Reinforcement learning for path planning of free-floating space robotic manipulator with collision avoidance and observation noise

Author:

Al Ali Ahmad,Zhu Zheng H.

Abstract

This study introduces a novel approach for the path planning of a 6-degree-of-freedom free-floating space robotic manipulator, focusing on collision and obstacle avoidance through reinforcement learning. It addresses the challenges of dynamic coupling between the spacecraft and the robotic manipulator, which significantly affects control and precision in the space environment. An innovative reward function is introduced in the reinforcement learning framework to ensure accurate alignment of the manipulator’s end effector with its target, despite disturbances from the spacecraft and the need for obstacle and collision avoidance. A key feature of this study is the use of quaternions for orientation representation to avoid the singularities associated with conventional Euler angles and enhance the training process’ efficiency. Furthermore, the reward function incorporates joint velocity constraints to refine the path planning for the manipulator joints, enabling efficient obstacle and collision avoidance. Another key feature of this study is the inclusion of observation noise in the training process to enhance the robustness of the agent. Results demonstrate that the proposed reward function enables effective exploration of the action space, leading to high precision in achieving the desired objectives. The study provides a solid theoretical foundation for the application of reinforcement learning in complex free-floating space robotic operations and offers insights for future space missions.

Funder

Canadian Space Agency

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

Reference44 articles.

1. Free-floating closed-chain planar robots: kinematics and path planning;Agrawal;Nonlinear Dyn.,1996

2. Canadarm, Canadarm2, and Canadarm3 – a comparative table

3. Dextre

4. Dynamic programming;Bellman;Science,1966

5. Unit quaternions: a mathematical tool for modeling, path planning and control of robot manipulators;Campa;Robot. Manip. InTech,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3