Assignment of Natural Frequencies and Mode Shapes Based on FRFs

Author:

Ren JunORCID,Cao Qiuyu

Abstract

This paper proposes a method of structural modification for the assignment of natural frequencies and mode shapes based on frequency response functions (FRFs). The method involves the addition of masses or stiffness (supporting stiffness or connection stiffness), the simultaneous addition of masses and stiffness, or the addition of mass-spring substructures to the original structure. Firstly, the proposed technique was formulated as an optimization problem based on the FRFs of the original structure and the masses or stiffness that needed to be added. Next, the required added masses and stiffness were obtained by solving the optimization problem using a genetic algorithm. Finally, numerical verification was performed for the different structural modification schemes. The results show that, compared to only adding either stiffness or masses, adding both simultaneously or adding spring-mass substructures obtained better optimization results. The advantage of this FRFs-based method is that the FRFs can be directly measured by modal testing, without knowledge of analytical or modal models. Furthermore, multiple structural modifications were considered in the assignment of natural frequencies and mode shapes, making the application of this method more applicable to engineering.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new general method for assigning frequencies with low spillover through structural modifications;Journal of Low Frequency Noise, Vibration and Active Control;2023-07-07

2. Prediction of Frequency Response of Fully-Assembled Rotor Based on Modal Testing Data on Partially-Assembled Rotor;2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS);2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3