Structural Reanalysis Based on FRFs Using Sherman–Morrison–Woodbury Formula

Author:

Ren Jun1ORCID,Zhang Qianghao1

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China

Abstract

Structural dynamic modification is a popular approach to obtain desire frequencies and dynamic characteristics. It has been observed that reanalyzing the modified structure usually involves complicated calculations when modifications are concerned with numerous degrees of freedom (DOFs), especially adding substructures to these DOFs. This paper proposed a method to reanalyze the frequency response functions (FRFs) of structures with multiple co-ordinates modifications. Two different cases are taken into consideration in the modifications, including adding (or decreasing) masses, stiffness, and damping, as well as adding spring-mass substructures, which makes the method more practical. This method is developed by employing Sherman–Morrison and Woodbury (SMW) formula based on the FRFs related to the modifications coordinates of the original system. The advantage of this method is that neither a physical model nor a modal model is required; instead, it needs only the FRFs, which can be directly measured by experimental modal testing. Another salient feature of this proposed strategy is that the FRFs of the modified structure can be calculated in only one step. Validation of this proposed method is demonstrated using various numerical examples. It is shown that the method is very effective and can be considered for real applications.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3