Author:
Cao Zeyu,Yao Wen,Peng Wei,Zhang Xiaoya,Bao Kairui
Abstract
The rapid analysis of thermal stress and deformation plays a pivotal role in the thermal control measures and optimization of the structural design of satellites. For achieving real-time thermal stress and thermal deformation analysis of satellite motherboards, this paper proposes a novel Multi-Task Attention UNet (MTA-UNet) neural network which combines the advantages of both Multi-Task Learning (MTL) and U-Net with an attention mechanism. Furthermore, a physics-informed strategy is used in the training process, where partial differential equations (PDEs) are integrated into the loss functions as residual terms. Finally, an uncertainty-based loss balancing approach is applied to weight different loss functions of multiple training tasks. Experimental results show that the proposed MTA-UNet effectively improves the prediction accuracy of multiple physics tasks compared with Single-Task Learning (STL) models. In addition, the physics-informed method brings less error in the prediction of each task, especially on small data sets.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献