PHYSICS-INFORMED POINTNET: ON HOW MANY IRREGULAR GEOMETRIES CAN IT SOLVE AN INVERSE PROBLEM SIMULTANEOUSLY? APPLICATION TO LINEAR ELASTICITY

Author:

Kashefi Ali,Guibas Leonidas J.,Mukerji Tapan

Abstract

Regular physics-informed neural networks (PINNs) predict the solution of partial differential equations using sparse labeled data but only over a single domain. On the other hand, fully supervised learning models are first trained usually over a few thousand domains with known solutions (i.e., labeled data) and then predict the solution over a few hundred unseen domains. Physics-informed PointNet (PIPN) is primarily designed to fill this gap between PINNs (as weakly supervised learning models) and fully supervised learning models. In this article, we demonstrate for the first time that PIPN predicts the solution of desired partial differential equations over a few hundred domains simultaneously, while it only uses sparse labeled data. This framework benefits fast geometric designs in the industry when only sparse labeled data are available. Particularly, we show that PIPN predicts the solution of a plane stress problem over more than 500 domains with different geometries, simultaneously. Moreover, we pioneer implementing the concept of remarkable batch size (i.e., the number of geometries fed into PIPN at each sub-epoch) into PIPN. We systematically try batch sizes of 7, 14, 19, 38, 76, and 133. Additionally, we systematically investigate for the first time the effect of the PIPN size, symmetric function in the PIPN architecture, and static and dynamic weights for the component of the sparse labeled data in the PIPN loss function.

Publisher

Begell House

Subject

General Medicine

Reference66 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, accessed from tensorflow.org, 2015.

2. Almajid, M.M. and Abu-Al-Saud, M.O., Prediction of Porous Media Fluid Flow Using Physics Informed Neural Networks, J. Pet. Sci. Eng., vol. 208, p. 109205, 2022.

3. Bai, J., Rabczuk, T., Gupta, A., Alzubaidi, L., and Gu, Y., A Physics-Informed Neural Network Technique Based on a Modified Loss Function for Computational 2D and 3D Solid Mechanics, Comput. Mech., vol. 71, no. 3, pp. 543-562, 2022.

4. Bengio, Y., Practical Recommendations for Gradient-Based Training of Deep Architectures, in Neural Networks: Tricks of the Trade, Berlin: Springer, pp. 437-478, 2012.

5. Bolandi, H., Sreekumar, G., Li, X., Lajnef, N., and Boddeti, V.N., Physics Informed Neural Network for Dynamic Stress Prediction, arXiv preprint arXiv:2211.16190, 2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3