Machine Learning Assisted Prediction of Airfoil Lift-to-Drag Characteristics for Mars Helicopter

Author:

Zhao Pengyue123ORCID,Gao Xifeng12,Zhao Bo12,Liu Huan12,Wu Jianwei12,Deng Zongquan3

Affiliation:

1. Center of Ultra-Precision Optoelectronic Instrumentation Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Key Laboratory of Ultra-Precision Intelligent Instrumentation, Ministry of Industry Information Technology, Harbin 150080, China

3. State Key Laboratory of Robotics and System, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin 150001, China

Abstract

The aerodynamic properties of rotor systems operating within low Reynolds number flow field conditions are profoundly influenced by their geometric and flight parameters. Precise estimation of optimal airfoil parameters at different angles of attack is indispensable for enhancing these aerodynamic properties. This study presents a technique for optimizing the airfoil parameters of a Mars helicopter by employing machine learning methods in conjunction with computational fluid dynamics (CFD) simulations, thereby circumventing the need for expensive experiments and simulations. The effectiveness of diverse machine learning algorithms for prediction is evaluated, and the resultant models are utilized for airfoil optimization. Ultimately, the aerodynamic properties of the optimized airfoil are experimentally validated. The experimental findings exhibit agreement with the simulated predictions, indicating the successful optimization of the aerodynamic properties. This research offers valuable insights into the influence of airfoil parameters on the aerodynamic properties of the Mars helicopter, along with guidance for airfoil optimization.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference41 articles.

1. Crisp, J.A., Adler, M., Matijevic, J.R., Squyres, S.W., Arvidson, R.E., and Kass, D.M. (2003). Mars exploration rover mission. J. Geophys. Res. Planets, 108.

2. Lindemann, R.A., and Voorhees, C.J. (2005, January 12). Mars Exploration Rover mobility assembly design, test and performance. Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, USA.

3. Modeling and experimental study on orientation dynamics of a Mars rotorcraft with swashplate mechanism;Zhu;Aerosp. Sci. Technol.,2023

4. Conceptual design and aerodynamic analysis of a Mars octocopter for sample collection;Zhu;Acta Astronaut.,2023

5. Aerodynamic characteristics of naca4402 in low reynolds number flows;Takaki;Jpn. Soc. Aeronaut. Space Sci.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3