A Sequential Framework for Improving Identifiability of FE Model Updating using Static and Dynamic Data

Author:

Kim ,Kim ,Park ,Jin

Abstract

By virtue of the advances in sensing techniques, finite element (FE) model updating (FEMU) using static and dynamic data has been recently employed to improve identification on updating parameters. Using heterogeneous data can provide useful information to improve parameter identifiability in FEMU. It is worth noting that the useful information from the heterogeneous data may be diluted in the conventional FEM framework. The conventional FEMU framework in previous studies have used heterogeneous data at once to compute residuals in the objective function, and they are condensed to be a scalar. In this implementation, it should be careful to formulate the objective function with proper weighting factors to consider the scale of measurement and relative significances. Otherwise, the information from heterogeneous data cannot be efficiently utilized. For FEMU of the bridge, parameter compensation may exist due to mutual dependence among updating parameters. This aggravates the parameter identifiability to make the results of the FEMU worse. To address the limitation of the conventional FEMU method, this study proposes a sequential framework for the FEMU of existing bridges. The proposed FEMU method uses two steps to utilize static and dynamic data in a sequential manner. By using them separately, the influence of the parameter compensation can be suppressed. The proposed FEMU method is verified through numerical and experimental study. Through these verifications, the limitation of the conventional FEMU method is investigated in terms of parameter identifiability and predictive performance. The proposed FEMU method shows much smaller variabilities in the updating parameters than the conventional one by providing the better predictions than those of the conventional one in calibration and validation data. Based on numerical and experimental study, the proposed FEMU method can improve the parameter identifiability using the heterogeneous data and it seems to be promising and efficient framework for FEMU of the existing bridge.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3