A Two-Step FE Model Updating Approach for System and Damage Identification of Prestressed Bridge Girders

Author:

Malekghaini Niloofar1,Ghahari Farid2,Ebrahimian Hamed1ORCID,Bowers Matthew3,Ahlberg Eric2,Taciroglu Ertugrul2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA

2. Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA

3. SC Solutions Inc., Sunnyvale, CA 94085, USA

Abstract

This study presents a two-step FE model updating approach for health monitoring and damage identification of prestressed concrete girder bridges. To reduce the effects of modeling error in the model updating process, in the first step, modal-based model updating is used to estimate linear model parameters mainly related to the stiffness of boundary conditions and material properties. In the second step, a time-domain model updating is carried out using acceleration data to refine parameters accounting for the nonlinear response behavior of the bridge. In this step, boundary conditions are fixed at their final estimates using modal-based model updating. To prevent the convergence of updating algorithm to local solutions, the initial estimates for nonlinear material properties are selected based on the first-step model updating results. To validate the applicability of the two-step FE model updating approach, a series of forced-vibration experiments are designed and carried out on a pair of full-scale decommissioned and deteriorated prestressed bridge I-girders. In the first step, parameters related to boundary conditions, including stiffness of supports and coupling beams, as well as material properties, including initial stiffness of concrete material, are estimated. In the second step, concrete compressive strength and damping properties are updated. The final estimates of the concrete compressive strength are used to infer the extent of damage in the girders. The obtained results agree with the literature regarding the extent of reduction in concrete compressive strength in deteriorated concrete structures.

Funder

the United States Department of Transportation Small Business Innovative Research (SBIR) program Phase II

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3