Affiliation:
1. Department of Mathematics and Psychology, Paine College, Augusta, GA 30901, USA
2. Naval Research Laboratory, Information Technology Division-5580, Washington, DC 20375, USA
Abstract
We develop a new theory of knowledge with mathematics and a broad-based series of case studies to seek a better understanding of what constitutes knowledge in the field and its value for autonomous human–machine teams facing uncertainty in the open. Like humans, as teammates, artificial intelligence (AI) machines must be able to determine what constitutes the usable knowledge that contributes to a team’s success when facing uncertainty in the field (e.g., testing “knowledge” in the field with debate; identifying new knowledge; using knowledge to innovate), its failure (e.g., troubleshooting; identifying weaknesses; discovering vulnerabilities; exploitation using deception), and feeding the results back to users and society. It matters not whether a debate is public, private, or unexpressed by an individual human or machine agent acting alone; regardless, in this exploration, we speculate that only a transparent process advances the science of autonomous human–machine teams, assists in interpretable machine learning, and allows a free people and their machines to co-evolve. The complexity of the team is taken into consideration in our search for knowledge, which can also be used as an information metric. We conclude that the structure of “knowledge”, once found, is resistant to alternatives (i.e., it is ordered); that its functional utility is generalizable; and that its useful applications are multifaceted (akin to maximum entropy production). Our novel finding is the existence of Shannon holes that are gaps in knowledge, a surprising “discovery” to only find Shannon there first.