The Impact of a Computing Curriculum Accessible to Students with ASD on the Development of Computing Artifacts

Author:

Arslanyilmaz Abdu1ORCID,Briley Margaret L.1,Boerio Gregory V.1ORCID,Petridis Katie2,Ilyas Ramlah1,Yu Feng1ORCID

Affiliation:

1. School of Computer Science, Information, and Engineering Technology, Younstown State University, Youngstown, OH 44555, USA

2. Potential Development Program, Youngstown, OH 44507, USA

Abstract

There has been no study examining the effectiveness of an accessible computing curriculum for students with autism spectrum disorder (ASD) on their learning of computational thinking concepts (CTCs), flow control, data representation, abstraction, user interactivity, synchronization, parallelism, and logic. This study aims to investigate the effects of an accessible computing curriculum for students with ASD on their learning of CTCs as measured by the scores of 312 computing artifacts developed by two groups of students with ASD. Conducted among 21 seventh-grade students with ASD (10 in the experimental group and 11 in the control), this study involved collecting data on the computing projects of these students over 24 instructional sessions. Group classification was considered the independent variable, and computing project scores were set as the dependent variables. The results showed that the original curriculum was statistically significantly more effective for students in learning logic than the accessible one when all seven CTCs were examined as a single construct. Both curriculums were statistically significantly effective in progressively improving students’ learning of data representation, abstraction, synchronization, parallelism, and all CTCs as a single construct when examining the gradual increase in their computing artifact scores over the 24 sessions. Both curriculums were statistically significantly effective in increasing the scores of synchronization and all CTCs as a single construct when the correlations between CTCs and sessions for individual groups were analyzed. The findings underscore that students with ASD can effectively learn computing skills through accessible or standard curriculums, provided that adjustments are made during delivery.

Funder

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3