PointNet++ and Three Layers of Features Fusion for Occlusion Three-Dimensional Ear Recognition Based on One Sample per Person

Author:

Zhu QinpingORCID,Mu Zhichun

Abstract

The ear’s relatively stable structure makes it suitable for recognition. In common identification applications, only one sample per person (OSPP) is registered in a gallery; consequently, effectively training deep-learning-based ear recognition approach is difficult. The state-of-the-art (SOA) 3D ear recognition using the OSPP approach bottlenecks when large occluding objects are close to the ear. Hence, we propose a system that combines PointNet++ and three layers of features that are capable of extracting rich identification information from a 3D ear. Our goal is to correctly recognize a 3D ear affected by a large nearby occlusion using one sample per person (OSPP) registered in a gallery. The system comprises four primary components: (1) segmentation; (2) local and local joint structural (LJS) feature extraction; (3) holistic feature extraction; and (4) fusion. We use PointNet++ for ear segmentation. For local and LJS feature extraction, we propose an LJS feature descriptor–pairwise surface patch cropped using a symmetrical hemisphere cut-structured histogram with an indexed shape (PSPHIS) descriptor. Furthermore, we propose a local and LJS matching engine based on the proposed LJS feature descriptor and SOA surface patch histogram indexed shape (SPHIS) local feature descriptor. For holistic feature extraction, we use a voxelization method for global matching. For the fusion component, we use a weighted fusion method to recognize the 3D ear. The experimental results demonstrate that the proposed system outperforms the SOA normalization-free 3D ear recognition methods using OSPP when the ear surface is influenced by a large nearby occlusion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Evaluation and analysis of ear recognition models: Performance, complexity and resource requirements;Emeršič,2018

2. Ear Identification (Forensic Identification Series);Iannarelli,1989

3. Ear biometrics: a survey of detection, feature extraction and recognition methods

4. Local and Holistic Feature Fusion for Occlusion-Robust 3D Ear Recognition

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3