Abstract
Biosensors and immunosensors show an increasing attractiveness when developing current cheap and fast monitoring and detecting devices. In this work, a model of immunosensor in a class of delayed lattice differential equations is offered and studied. The spatial operator describes symmetric diffusion processes of antigenes between pixels. The main results are devoted to the qualitative research of the model. The conditions of global asymptotic stability, which are constructed with the help of Lyapunov functionals, determine a lower estimate of the time of immune response. Nonlinear analysis of the model is performed with help of a series of numerical characteristics including autocorrelation function, mutual information, embedding, and correlation dimensions, sample entropy, the largest Lyapunov exponents. We consider the influence of both symmetric and unsymmetric diffusion of antigens between pixels on the qualitative behavior of the system. The outcomes are verified with the help of numerical simulation in cases of 4 × 4 - and 16 × 16 - arrays of immunopixels.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献