Application of the Structure Function in the Evaluation of the Human Factor in Healthcare

Author:

Zaitseva ElenaORCID,Levashenko Vitaly,Rabcan Jan,Krsak Emil

Abstract

A structure function is one of the possible mathematical models of systems in reliability engineering. A structure function maps sets of component states into system performance levels. Methods of system reliability evaluation based on structure function representation are well established. A structure function can be formed based on completely specified data about system behavior. Such data for most real-world systems are incomplete and uncertain. The typical example is analysis and evaluation of the human factor. Therefore, the structure function is not used in human reliability analysis (HRA) typically. In this paper, a method for structure function construction is proposed based on incomplete and uncertain data in HRA. The proposed method application is considered for healthcare to evaluate medical error. This method is developed using a fuzzy decision tree (FDT), which allows all possible component states to be classified into classes of system performance levels. The structure function is constructed based on the decision table, which is formed according to the FDT. A case study for this method is considered by evaluating the human factor in healthcare: complications in the familiarization and exploitation of a new device in a hospital department are analyzed and evaluated. This evaluation shows the decreasing of medical errors in diagnosis after one year of device exploitation and a slight decrease in quality of diagnosis after two months of device exploitation. Numerical values of probabilities of medical error are calculated based on the proposed approach.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference70 articles.

1. Reliability engineering: Old problems and new challenges

2. Uncertainty in Risk Assessment: The Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods;Aven,2014

3. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools

4. Multistate Systems Reliability Theory with Applications;Natvig,2011

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3