Author:
Shi Wenchuan,Wang Liejun,Qin Jiwei
Abstract
The collaborative filtering algorithm based on the singular value decomposition plus plus (SVD++) model employs the linear interactions between the latent features of users and items to predict the rating in the recommendation systems. Aiming to further enrich the user model with explicit feedback, this paper proposes a user embedding model for rating prediction in SVD++-based collaborative filtering, named UE-SVD++. We exploit the user potential explicit feedback from the rating data and construct the user embedding matrix by the proposed user-wise mutual information values. In addition, the user embedding matrix is added to the existing user bias and implicit parameters in the SVD++ to increase the accuracy of the user modeling. Through extensive studies on four different datasets, we found that the rating prediction performance of the UE-SVD++ model is improved compared with other models, and the proposed model’s evaluation indicators root-mean-square error (RMSE) and mean absolute error (MAE) are decreased by 1.002–2.110% and 1.182–1.742%, respectively.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献