A cold-start recommendation method for We-map considering co-occurrence collaborative signals and contrastive learning

Author:

Ma Wenjun1234ORCID,Yan Haowen123ORCID,Li Jingzhong123ORCID,Wang Xiaolong56ORCID,Wang Zhuo7ORCID,Yang Qili123ORCID,Fu Xuan123ORCID

Affiliation:

1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China

2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou Jiaotong University, Lanzhou, China

3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou Jiaotong University, Lanzhou, China

4. Academician Expert Workstation of Gansu Dayu Jiuzhou Space Information Technology Co., Ltd., Lanzhou, China

5. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

6. Key Laboratory of Western China’s Environmental Systems, Ministry of Education, Lanzhou, China

7. School of Resources and Environmental Sciences, Wuhan University, Wuhan, China

Funder

The National Natural Science Foundation of China

The Graduate Education Teaching Quality Improvement Project of Lanzhou Jiaotong University

National Natural Science Foundation Major Program of China

The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources

The Open Research Fund of Key Laboratory of Digital Earth Science, Chinese Academy of Sciences

The Natural Science Foundation of Hubei Province

Publisher

Informa UK Limited

Reference47 articles.

1. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions

2. Infonce is a variational autoencoder;Aitchison L.;arXiv Preprint,,2021

3. Visual variables of We-maps symbols and their applications;Bai Y.;Surveying and Mapping Science,2021

4. Bhumika and Das, D., 2022. MARRS: a framework for multi-objective risk-aware route recommendation using multitask-transformer. In: Proceedings of the proceedings of the 16th ACM conference on recommender systems, F.

5. LightGCL: simple yet effective graph contrastive learning for recommendation;Cai X.;arXiv Preprint,,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3