An Optimal Scheduling Strategy of a Microgrid with V2G Based on Deep Q-Learning

Author:

Wen Yuxin,Fan PeixiaoORCID,Hu Jia,Ke SongORCID,Wu Fuzhang,Zhu Xu

Abstract

In recent years, the access of various distributed power sources and electric vehicles (EVs) has brought more and more randomness and uncertainty to the operation and regulation of microgrids. Therefore, an optimal scheduling strategy for microgrids with EVs based on Deep Q-learning is proposed in this paper. Firstly, a vehicle-to-grid (V2G) model considering the mobility of EVs and the randomness of user charging behavior is proposed. The charging time distribution model, charging demand model, state-of-charge (SOC) dynamic model and the model of travel location are comprehensively established, thereby realizing the construction of the mathematical model of the microgrid with EVs: it can obtain the charging/discharging situation in the EV station, so as to obtain the overall output power of the EV station. Secondly, based on Deep Q-learning, the state space and action space are set up according to the actual microgrid system, and the design of the optimal scheduling reward function is completed with the goal of economy. Finally, the calculation example results show that compared with the traditional optimization algorithm, the strategy proposed in this paper has the ability of online learning and can cope with the randomness of renewable resources better. Meanwhile, the agent with experience replay ability can be trained to complete the evolution process, so as to adapt to the nonlinear influence caused by the mobility of EVs and the periodicity of user behavior, which is feasible and superior in the field of optimal scheduling of microgrids with renewable resources and EVs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3