Robust Optimal Scheduling of Microgrid with Electric Vehicles Based on Stackelberg Game

Author:

Hao Jianhong1,Huang Ting1,Xu Qiuming2,Sun Yi1

Affiliation:

1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

2. Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China

Abstract

With increasing penetration of distributed generators (DG), the uncertainty and intermittence of renewable energy has brought new challenges to the economic dispatch and promotion of environment sustainability of microgrids. Active loads, especially in electric vehicles (EVs), are thought to be an efficient way to deal with the uncertainty and intermittence of renewable energy. One of the most important features of EVs is that their demand will vary in response to the electricity price. How to determine the real-time charging price to guide the orderly charging of EVs and operate with an uncertain renewable energy output represents an important topic for the microgrid operator (MGO). To this end, this paper formulates the optimal pricing and robust dispatch problem of the MGO as a Stackelberg game, in which the upper level minimizes the MGO’s cost, while the lower level minimizes the charging cost of each EV. In the problem, the approximate linear relationship between the node voltage and equivalent load is modeled, and the approximate linear expression of the node voltage security constraint is derived. Using dual optimization theory, the robust optimal dispatch model is transformed into a linear programming model without uncertain variables. Then, the Stackelberg game model is transformed into a mixed integer linear program by using the duality theorem of linear programming. Finally, the effectiveness of the proposed method is proved by simulation within the modified IEEE33-bus system.

Funder

Science and Technology Project of the State Grid Corporation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3