Abstract
The voltage supply of induction motors of various sizes is typically provided by a shared power bus in an industrial production powerline network. A single motor’s dynamic behavior produces a signal that travels along the powerline. Powerline networks are efficient at transmitting and receiving signals. This could be an indication that there is a problem with the motor down immediately from its location. It is possible for the consolidated network signal to become confusing. A mathematical model is used to measure and determine the possible known routing of various signals in an electricity network based on attenuation and estimate the relationship between sensor signals and known fault patterns. A laboratory WSN based induction motors testbed setup was developed using Xbee devices and microcontroller along with the variety of different-sized motors to verify the progression of faulty signals and identify the type of fault. These motors were connected in parallel to the main powerline through this architecture, which provided an excellent concept for an industrial multi-motor network modeling lab setup. A method for the extraction of Xbee node-level features has been developed, and it can be applied to a variety of datasets. The accuracy of the real-time data capture is demonstrated to be very close data analyses between simulation and testbed measurements. Experimental results show a comparison between manual data gathering and capturing Xbee sensor nodes to validate the methodology’s applicability and accuracy in locating the faulty motor within the power network.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Overview of Advancements in Multimotor Drives: Structural Diversity, Advanced Control, Specific Technical Challenges, and Solutions;Proceedings of the IEEE;2024-03
2. Heterogeneous Induction Motor Current Dataset Fusion for Efficient Generalised MCSA-Based Fault Classification;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14