Abstract
To determine which interpolation technique is the most suitable for each case study is an essential task for a correct soil mapping, particularly in studies performed at a regional scale. So, our main goal was to identify the most accurate method for mapping 12 soil variables at three different depth intervals: 0–5, 5–10 and >10 cm. For doing that, we have compared nine interpolation methods (deterministic and geostatistical), drawing soil maps of the Spanish region of Extremadura (41,635 km2 in size) from more than 400 sampling sites in total (e.g., more than 500 for pH for the depth of 0–5 cm). We used the coefficient of determination (R2), the mean error (ME) and the root mean square error (RMSE) as statistical parameters to assess the accuracy of each interpolation method. The results indicated that the most accurate method varied depending on the property and depth of study. In soil properties such as clay, EBK (Empirical Bayesian Kriging) was the most accurate for 0–5 cm layer (R2 = 0.767 and RMSE = 3.318). However, for 5–10 cm in depth, it was the IDW (Inverse Distance Weighted) method with R2 and RMSE values of 0.689 and 5.131, respectively. In other properties such as pH, the CRS (Completely Regularized Spline) method was the best for 0–5 cm in depth (R2 = 0.834 and RMSE = 0.333), while EBK was the best for predicting values below 10 cm (R2 = 0.825 and RMSE = 0.399). According to our findings, we concluded that it is necessary to choose the most accurate interpolation method for a proper soil mapping.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献