Experimental Evaluation of the Thermoelectrical Performance of Photovoltaic-Thermal Systems with a Water-Cooled Heat Sink

Author:

Hasan Husam Abdulrasool,Sherza Jenan S.,Mahdi Jasim M.ORCID,Togun HusseinORCID,Abed Azher M.,Ibrahim Raed Khalid,Yaïci WahibaORCID

Abstract

A design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings indicate that the PV temperature would increase from 65 to 73 °C, when the solar irradiation increases from 500 to 960 W/m2, with and without cooling, respectively. Meanwhile, the output power increased from 35 to 55 W when the solar irradiation increased from 500 to 960 W/m2 during the daytime. The impact of varying the mass flow rate of cooling water in the range of 4 to 16 L/min was also examined, and it was found that the cell temperature declines as the water flow increases in intensity throughout the daytime. The maximum cell temperature recorded for PV modules without cooling was in the middle of the day. The lowest cell temperature was also recorded in the middle of the day for a PVT solar system with 16 L/min of cooling water.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3