Experimental Performance of an Advanced Air-Type Photovoltaic/Thermal (PVT) Collector with Direct Expansion Air Handling Unit (AHU)

Author:

Kim Jin-HeeORCID,Kim Sang-MyungORCID,Kim Jun-Tae

Abstract

In addition to electrical energy generation, photovoltaic/thermal (PVT) systems utilize heat from building-integrated photovoltaic (BIPV) modules for domestic hot water and space heating. In other words, a PVT system can improve the electricity efficiency of BIPVs while using the waste heat of BIPVs as a source of thermal energy for the building. By generating thermal and electrical energies simultaneously, PVT systems can improve the utilization of solar energy while enhancing the energy performance of buildings. To optimize the performance of an air-type PVT collector, it is necessary for the system to extract more heat from the PV module. Consequently, this approach decreases PV temperature to improve PV electrical energy generation. The thermal and electrical performance of an air-type PVT collector depends on its design, which affects airflow and heat transfer. Moreover, the performances of the PVT collector can differ according to the coupled facility in the building. In this study, the thermal and electrical performances of an advanced air-type PVT collector with a direct expansion air handling unit (AHU) were analyzed experimentally. For this purpose, six prototypes of an advanced air-type PVT collector were developed. Furthermore, a direct expansion AHU with a heat recovery exchanger (HRX) was designed and built. The advanced PVT collectors with a total capacity of 740 Wp were installed in an experimental house and were coupled to the direct expansion AHU system with a maximum airflow of 700 CMH. The performance of PVT collectors was analyzed and compared with the BIPV system. Results showed that building-integrated photovoltaic/thermal (BIPVT) collectors produced 30 W more power than the BIPV system. When operating the AHU system, the temperature of the BIPVT collector was generally lower than the BIPV. The maximum difference in temperature between BIPVT and BIPV was about 22 °C. During winter season, the BIPVT collector supplied preheated air to the AHU. The supplied air temperature from the BIPVT collector reached 32 °C, which was 15 °C higher than outdoor air temperature.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3