Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks

Author:

Mazza Andrea,Mirtaheri Hamidreza,Chicco GianfrancoORCID,Russo AngelaORCID,Fantino Maurizio

Abstract

Proper planning of the installation of Battery Energy Storage Systems (BESSs) in distribution networks is needed to maximize the overall technical and economic benefits. The limited lifetime and relatively high cost of BESSs require appropriate decisions on their installation and deployment, in order to make the best investment. This paper proposes a comprehensive method to fully support the BESS location and sizing in a low-voltage (LV) network, taking into account the characteristics of the local generation and demand connected at the network nodes, and the time-variable generation and demand patterns. The proposed procedure aims to improve the overall network conditions, by considering both technical and economic aspects. An original approach is presented to consider both the planning and scheduling of BESSs in an LV system. This approach combines the properties of metaheuristics for BESS sizing and placement with a greedy algorithm to find viable BESS scheduling in a relatively short time considering a specified time horizon, and the application of decision theory concepts to obtain the final solution. The decision theory considers various scenarios with variable energy prices, the diffusion of local renewable generation, evolution of the local demand with the integration of electric vehicles, and a number of planning alternatives selected as the solutions with top-ranked objective functions of the operational schedules in the given scenarios. The proposed approach can be applied to energy communities where the local system operator only manages the portion of the electrical grid of the community and is responsible for providing secure and affordable electricity to its consumers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3