On Preheating of the Outdoor Ventilation Air

Author:

Romanska-Zapala Anna,Bomberg MarkORCID,Dechnik MiroslawORCID,Fedorczak-Cisak Malgorzata,Furtak Marcin

Abstract

The growing popularity of buildings with integrated sub-systems requires a review of methods to optimize the preheating of ventilation air. An integrated system permits using geothermal heat storage parallel to the direct outdoor air intake with additional treatment in the mechanical room as a part of building an automatic control system. The earth–air heat exchanger (EAHX) has many advantages but also has many unanswered questions. Some of the drawbacks are: A possible entry of radon gas, high humidity in the shoulder seasons, and the need for two different air intake sources with a choice that depends on the actual weather conditions. In winter the EAHX may be used continuously to ensure thermal comfort, while in other seasons its operation must be automatically controlled. To generate missing information about EAHX technology we examined two nearly identical EAHX systems, one placed in the ground next to a building and the other under the basement slab. In another project, we reinforced the ground storage action by having a heat exchanger placed on the return pipes of the hydronic heating system. The information provided in this paper shows advantages of merging both these approaches, while the EAHX could be placed under the house or near the basement foundation that is using an exterior basement insulation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. Smart House—Intelligent building—The idea of the future (in Polish);Dechnik;Przegląd Elektrotechniczny,2017

2. The Need for Automatic Bypass Control to Improve the Energy Efficiency of a Building Through the Cooperation of a Horizontal Ground Heat Exchanger with a Ventilation Unit During Transitional Seasons: A Case Study;Romańska-Zapała,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3