Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance

Author:

Michalak PiotrORCID

Abstract

Due to their simple design and reliable operation, earth-to-air heat exchangers (EAHE) are used in modern buildings to reduce ventilation heat losses. EAHE operation in atmospheric conditions results in variation in ambient air temperature and pressure affecting air density. The paper presents the study on the impact of ambient air density variation on the calculated hourly air temperature at the EAHE outlet and the resulting energy use for space heating and cooling of an exemplary residential building. The ground temperature was computed from the model given in EN 16798-5-1. Then, air density was obtained using five various methods. Energy use for space heating and cooling of the building was computed using the 5R1C thermal network model of EN ISO 13790. Depending on the chosen method and concerning the base case without EAHE, a reduction in annual heating and cooling needs was obtained from 7.5% to 8.8% in heating and from 15.3% to 19% in cooling. Annual heating and cooling gain from EAHE were 600.9 kWh and 628.3 kWh for heating and 616.9 kWh and 603.5 kWh for cooling for the Typical Meteorological Years (TMY) and International Weather for Energy Calculation (IWEC) files, respectively. Unit heating and cooling gains per heat exchanger area were from 34.9 kWh/m2 to 36.8 kWh/m2 and from −35.1 kWh/m2 to −36.3 kWh/m2. Density variation with temperature from the relevant typical Polish meteorological year at constant pressure, in comparison to the method of EN 16798-5-1, resulted in an hourly difference of that unit gain up to 4.3 W/m2 and 2.0 W/m2 for heating and cooling, respectively. The same was true inthe case of IWEC files that resulted in differences of 5.5 W/m2 and 1.1 W/m2.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3