Abstract
The range of available aluminum alloy powders for laser powder bed fusion (LPBF) is restricted to mainly Al–Si based alloys. Currently aluminum alloy powders, designed for lightweight application, based on Al–Mg (5000 series), Al–Si–Mg (6000 series), or Al–Zn–Mg (7000 series), cannot be processed by LPBF without solidification cracks. This has an impact on the potential of LPBF for lightweight applications. In fusion welding, solidification cracks are eliminated by using filler materials. This study aims to transfer the known procedure to LPBF, by supplementing EN AW-5083 (AlMg4.5Mn0.7) with AlSi10Mg. EN AW-5083 and two modifications (+7 wt.% and +15 wt.% AlSi10Mg) were produced by LPBF and analyzed. It was found that, in EN AW-5083, the solidification cracks have a length ≥200 µm parallel to the building direction. Furthermore, the solidification cracks can already be eliminated by supplementing 7 wt.% AlSi10Mg. The microstructure analysis revealed that, by supplementing AlSi10Mg, the melt pool boundaries become visible, and the grain refines by 40% relative to the base alloy. Therefore, adding a low melting point phase and grain refinement are the mechanisms that eliminate solidification cracking. This study illustrates a practical approach to eliminate solidification cracks in LPBF.
Funder
Federal Ministry of Education and Research
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献