Process Window for Highly Efficient Laser-Based Powder Bed Fusion of AlSi10Mg with Reduced Pore Formation

Author:

Leis ArturORCID,Weber Rudolf,Graf Thomas

Abstract

The process window for highly efficient laser-based powder bed fusion (LPBF), ensuring the production of parts with low porosity, was determined by analyzing cross-sections of samples that were generated with laser powers varying between 10.8 W and 1754 W, laser beam diameters varying between 35 μm and 200 μm, and velocities of the moving laser beam ranging between 0.7 m/s and 1.3 m/s. With these parameters, the process alters between different modes that are referred to as simple heating, heat conduction melting (HCM), key-bowl melting (KBM), and deep-penetration melting (DPM). It was found that the optimum process window for a highly efficient LPBF process, generating AlSi10Mg parts with low porosity, is determined by the ratio PL/db of the incident laser power PL and the beam diameter db of the beam on the surface of the bead, and ranges between PL/db = 2000 W/mm and PL/db = 5200 W/mm, showing process efficiencies of about 7–8%. This optimum process window is centered around the range PL/db = 3000–3500 W/mm, in which the process is characterized by KBM, which is an intermediate process mode between HCM and DPM. Processes with PL/db < 2000 W/mm partially failed, and lead to balling and a lack of fusion, whereas processes with PL/db > 5200 W/mm showed a process efficiency below 5% and pore ratios exceeding 10%.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3