Artificial Intelligence-Empowered Doppler Weather Profile for Low-Earth-Orbit Satellites

Author:

Sharma Ekta1ORCID,Deo Ravinesh C.1ORCID,Davey Christopher P.1ORCID,Carter Brad D.2ORCID

Affiliation:

1. Artificial Intelligence Applications Laboratory, School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia

2. Centre for Astrophysics, University of Southern Queensland, Springfield, QLD 4300, Australia

Abstract

Low-Earth-orbit (LEO) satellites are widely acknowledged as a promising infrastructure solution for global Internet of Things (IoT) services. However, the Doppler effect presents a significant challenge in the context of long-range (LoRa) modulation uplink connectivity. This study comprehensively examines the operational efficiency of LEO satellites concerning the Doppler weather effect, with state-of-the-art artificial intelligence techniques. Two LEO satellite constellations—Globalstar and the International Space Station (ISS)—were detected and tracked using ground radars in Perth and Brisbane, Australia, for 24 h starting 1 January 2024. The study involves modelling the constellation, calculating latency, and frequency offset and designing a hybrid Iterative Input Selection–Long Short-Term Memory Network (IIS-LSTM) integrated model to predict the Doppler weather profile for LEO satellites. The IIS algorithm selects relevant input variables for the model, while the LSTM algorithm learns and predicts patterns. This model is compared with Convolutional Neural Network and Extreme Gradient Boosting (XGBoost) models. The results show that the packet delivery rate is above 91% for the sensitive spread factor 12 with a bandwidth of 11.5 MHz for Globalstar and 145.8 MHz for ISS NAUKA. The carrier frequency for ISS orbiting at 402.3 km is 631 MHz and 500 MHz for Globalstar at 1414 km altitude, aiding in combating packet losses. The ISS-LSTM model achieved an accuracy of 97.51% and a loss of 1.17% with signal-to-noise ratios (SNRs) ranging from 0–30 dB. The XGB model has the fastest testing time, attaining ≈0.0997 s for higher SNRs and an accuracy of 87%. However, in lower SNR, it proves to be computationally expensive. IIS-LSTM attains a better computation time for lower SNRs at ≈0.4651 s, followed by XGB at ≈0.5990 and CNN at ≈0.6120 s. The study calls for further research on LoRa Doppler analysis, considering atmospheric attenuation, and relevant space parameters for future work.

Publisher

MDPI AG

Reference36 articles.

1. Resident space objects classification by machine learning techniques;Samorodova;J. Phys. Conf. Ser.,2024

2. Multibistatic radar for space surveillance and tracking;Cataldo;IEEE Aerosp. Electron. Syst. Mag.,2020

3. Pecoraro, G., Cianca, E., Marino, G., and Ruggieri, M. (2017, January 4–11). Preliminary design of a small tracking RADAR for LEO space objects. Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA.

4. Yang, X. (2020). Low Earth Orbit (LEO) Mega Constellations-Satellite and Terrestrial Integrated Communication Networks. [Ph.D. Thesis, University of Surrey].

5. LEO satellite access network (LEO-SAN) towards 6G: Challenges and approaches;Xiao;IEEE Wirel. Commun.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3