Abstract
Abstract
In recent years the number of resident space objects in near-Earth space has been increasing drastically, which can lead to a “cascade collisions” effect and other catastrophic consequences. Therefore, it is crucial to monitor resident space objects, maintain and update catalogues on time, including the identification of unknown space objects to estimate their location and potential orbit. It is necessary to perform resident space object identification quickly and accurately to avoid possible satellite collisions resulting in large clouds of uncontrollable space debris fragments. That is why the task of resident space object preliminary classification by TLEs is stated and solved by applying machine learning approaches to achieve a higher classification quality and speed. This issue is a highly imbalanced classification problem, which narrows and specifies the used models. Applying the proposed resident space object classification model to space surveillance systems can decrease the time required for the object identification significantly.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献