Development of a Moving Baseline RTK/Motion Sensor-Integrated Positioning-Based Autonomous Driving Algorithm for a Speed Sprayer

Author:

Han Joong-heeORCID,Park Chi-ho,Jang Young Yoon

Abstract

To address problems such as pesticide poisoning and accidents during pest control work and to enable efficient work in this area, the development of a competitively prices speed sprayer with autonomous driving is required. Accordingly, in order to contribute to developing the commercialization of a low-cost autonomous driving speed sprayer, we developed a positioning algorithm and an autonomous driving-based spraying algorithm by using two low-cost global navigation satellite system (GNSS) modules and a low-cost motion sensor. In order to provide stable navigation solutions from the autonomous driving hardware despite disturbances from the electromagnetic field generated by the spraying device, the proposed positioning algorithm, a moving baseline (MB) real-time kinematic (RTK)/motion sensor-integrated positioning algorithm, was developed using a loosely coupled extended Kalman filter. To compare the yaw estimation performance provided by the MB RTK positioning technique, yaw was calculated by post-processing with two types of positioning algorithms: the MB RTK/motion sensor-integrated positioning algorithm and the GNSS RTK/motion sensor-integrated positioning algorithm. In the static test, the precision of the yaw provided by the MB RTK/motion sensor-integrated positioning algorithm was 0.14°, but with the GNSS RTK/motion sensor-integrated positioning algorithm, the precision of the yaw was 4.53°. The static test results confirmed that the proposed positioning algorithm using the yaw provided by the MB RTK positioning technique based on two GNSS modules for measurement, precisely estimated the yaw even when the spray engine was operating. To perform autonomous driving and spraying, an autonomous driving-based spraying algorithm was developed using the MB RTK/motion sensor-integrated positioning algorithm. As a result of two performance tests based on the proposed algorithm in an orchard, autonomous driving and spraying were stably performed according to the set autonomous driving route and spraying method, and the root mean square (RMS) of the path-following error was 0.06 m.

Funder

DGIST R&D program of the Ministry of Science and ICT of KOREA

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3