Abstract
In this study the preparation and properties of potassium hydroxide-doped meta-polybenzimidazole membranes with 20–30 μm thickness are reported as anion conducting polymer electrolyte for application in fuel cells. Dibutyl phthalate as porogen forms an asymmetrically porous structure of membranes along thickness direction. One side of the membranes has a dense skin layer surface with 1.5–15 μm and the other side of the membranes has a porous one. It demonstrated that ion conductivity of the potassium hydroxide-doped porous membrane with the porogen content of 47 wt.% (0.090 S cm−1), is 1.4 times higher than the potassium hydroxide-doped dense membrane (0.065 S cm−1). This is because the porous membrane allows 1.4 times higher potassium hydroxide uptake than dense membranes. Tensile strength and elongation studies confirm that doping by simply immersing membranes in potassium hydroxide solutions was sufficient to fill in the inner pores. The membrane-electrode assembly using the asymmetrically porous membrane with 1.4 times higher ionic conductivity than the dense non-doped polybenzimidazole (mPBI) membrane showed 1.25 times higher peak power density.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献