Using NaOH@Graphene oxide-Fe3O4 as a magnetic heterogeneous catalyst for ultrasonic transesterification; experimental and modelling

Author:

Haghighi Sepideh Moradi,Hemmati Alireza,Moghadamzadeh Hamidreza,Ghaemi Ahad,Raoofi Nahid

Abstract

AbstractBurning fossil fuels causes toxic gas emissions to increase, therefore, scientists are trying to find alternative green fuels. One of the important alternative fuels is biodiesel. However, using eco-friendly primary materials is a main factor. Sustainable catalysts should have high performance, good activity, easy separation from reaction cells, and regenerability. In this study, to solve the mentioned problem NaOH@Graphene oxide-Fe3O4 as a magnetic catalyst was used for the first time to generate biodiesel from waste cooking oil. The crystal structure, functional groups, surface area and morphology of catalyst were studied by XRD, FTIR, BET, and FESEM techniques. The response surface methodology based central composite design (RSM-CCD) was used for biodiesel production via ultrasonic technique. The maximum biodiesel yield was 95.88% in the following operation: 10.52:1 molar ratio of methanol to oil, a catalyst weight of 3.76 wt%, a voltage of 49.58 kHz, and a time of 33.29 min. The physiochemical characterization of biodiesel was based to ASTM standard. The magnetic catalyst was high standstill to free fatty acid due to the five cycle’s regeneration. The kinetic study results possess good agreement with first-order kinetics as well as the activation energy and Arrhenius constant are 49.2 kJ/min and 16.47 * 1010 min−1, respectively.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3