Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide

Author:

Goh Pei Sean1ORCID,Samavati Zahra1,Ismail Ahmad Fauzi1,Ng Be Cheer1,Abdullah Mohd Sohaimi1,Hilal Nidal2ORCID

Affiliation:

1. Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

2. NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates

Abstract

Membrane technology has become increasingly popular and important for separation processes in industries, as well as for desalination and wastewater treatment. Over the last decade, the merger of nanotechnology and membrane technology in the development of nanocomposite membranes has emerged as a rapidly expanding research area. The key motivation driving the development of nanocomposite membranes is the pursuit of high-performance liquid separation membranes that can address the bottlenecks of conventionally used polymeric membranes. Nanostructured materials in the form of zero to three-dimensions exhibit unique dimension-dependent morphology and topology that have triggered considerable attention in various fields. While the surface hydrophilicity, antibacterial, and photocatalytic properties of TiO2 are particularly attractive for liquid separation membranes, the geometry-dependent properties of the nanocomposite membrane can be further fine-tuned by selecting the nanostructures with the right dimension. This review aims to provide an overview and comments on the state-of-the-art modifications of liquid separation membrane using TiO2 as a classical example of multidimensional nanomaterials. The performances of TiO2-incorporated nanocomposite membranes are discussed with attention placed on the special features rendered by their structures and dimensions. The innovations and breakthroughs made in the synthesis and modifications of structure-controlled TiO2 and its composites have enabled fascinating and advantageous properties for the development of high-performance nanocomposite membranes for liquid separation.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3