Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability

Author:

Li Min1,Liu Feng1,Pei Supeng2,Zhou Zongshang2,Niu Kai1,Wu Jianbo3,Zhang Yongming1

Affiliation:

1. School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and Shanghai Key Lab of Electrical Insulation & Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

3. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Center of Hydrogen Science, Materials Genome Initiative Center, Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Platinum-based catalysts are widely used for efficient catalysis of the acidic oxygen reduction reaction (ORR). However, the agglomeration and leaching of metallic Pt nanoparticles limit the catalytic activity and durability of the catalysts and restrict their large-scale commercialization. Therefore, this study aimed to achieve a uniform distribution and strong anchoring of Pt nanoparticles on a carbon support and improve the ORR activity and durability of proton-exchange membrane fuel cells. Herein, we report on the facile one-pot synthesis of a novel ORR catalyst using metal–nitrogen–carbon (M–N–C) bonding, which is formed in situ during the ion exchange and pyrolysis processes. An ion-exchange resin was used as the carbon source containing R-N+(CH3)3 groups, which coordinate with PtCl62− to form nanosized Pt clusters confined within the macroporous framework. After pyrolysis, strong M-N-C bonds were formed, thereby preventing the leaching and aggregation of Pt nanoparticles. The as-synthesized Pt supported on the N-doped hierarchically porous carbon catalyst (Pt/NHPC-800) showed high specific activity (0.3 mA cm−2) and mass activity (0.165 A mgPt−1), which are approximately 2.7 and 1.5 times higher than those of commercial Pt/C, respectively. The electrochemical surface area of Pt/NHPC-800 remained unchanged (~1% loss) after an accelerated durability test of 10,000 cycles. The mass activity loss after ADT of Pt/NHPC-800 was 18%, which is considerably lower than that of commercial Pt/C (43%). Thus, a novel ORR catalyst with highly accessible and homogeneously dispersed Pt-N-C sites, high activity, and durability was successfully prepared via one-pot synthesis. This facile and scalable synthesis strategy for high-efficiency catalysts guides the further synthesis of commercially available ORR catalysts.

Funder

the National Key R&D Program of China

the Program of Shanghai Science and Technology Commission Science and Technology Innovation Action Plan

the Natural Science Foundation of Shandong Province, China

the Key Research Project of Shandong Province

the Center of Hydrogen Science and Joint Research Center for Clean Energy Materials at Shanghai Jiao Tong University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3