Transport‐Friendly Microstructure in SSC‐MEA: Unveiling the SSC Ionomer‐Based Membrane Electrode Assemblies for Enhanced Fuel Cell Performance

Author:

Li Min1,Ding Han2,Song Jingnan1,Hao Bonan1,Zeng Rui1,Li Zhenyu1,Wu Xuefei3,Fink Zachary3,Zhou Libo1,Russel Thomas P.3,Liu Feng1ORCID,Zhang Yongming1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Center of Hydrogen Science Shanghai Key Lab of Electrical Insulation & Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China

2. School of Energy Power and Mechanical Engineering North China Electric Power University Beijing 102206 China

3. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Abstract

AbstractThe significant role of the cathodic binder in modulating mass transport within the catalyst layer (CL) of fuel cells is essential for optimizing cell performance. This investigation focuses on enhancing the membrane electrode assembly (MEA) through the utilization of a short‐side‐chain perfluoro‐sulfonic acid (SSC‐PFSA) ionomer as the cathode binder, referred to as SSC‐MEA. This study meticulously visualizes the distinctive interpenetrating networks of ionomers and catalysts, and explicitly clarifies the triple‐phase interface, unveiling the transport‐friendly microstructure and transport mechanisms inherent in SSC‐MEA. The SSC‐MEA exhibits advantageous microstructural features, including a better‐connected ionomer network and well‐organized hierarchical porous structure, culminating in superior mass transfer properties. Relative to the MEA bonded by long‐side‐chain perfluoro‐sulfonic acid (LSC‐PFSA) ionomer, noted as LSC‐MEA, SSC‐MEA exhibits a notable peak power density (1.23 W cm−2), efficient O2 transport, and remarkable proton conductivity (65% improvement) at 65 °C and 70% relativity humidity (RH). These findings establish crucial insights into the intricate morphology‐transport‐performance relationship in the CL, thereby providing strategic guidance for developing highly efficient MEA.

Funder

National Key Research and Development Program of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3