Interfacial Insight of Charge Transport in BaTiO3/Epoxy Composites

Author:

Jia Beibei,Zhou Jun,Chen Jiaxin,Zhang Zixuan,Wang Yang,Lv Zepeng,Wu Kai

Abstract

Space charge accumulation greatly influences the dielectric performance of epoxy composites under high voltage. It has been reported that nano-fillers can suppress the charge accumulation in the bulk of insulation materials. However, it is still unclear how the nano-fillers influence the charge distribution at the interface between the filler and polymeric matrix. In this work, the dielectric properties and the local dynamic charge mobility behavior at the interface of barium titanate/epoxy resin (BTO/EP) composites were investigated from both bulk and local perspectives based on the macroscopic test techniques and in-situ Kelvin probe force microscopy (KPFM) methods. Charge injection and dissipation behavior exhibited significant discrepancies at different interfaces. The interface between BTO and epoxy is easy to accumulates a negative charge, and nanoscale BTO (n-BTO) particles introduces deeper traps than microscale BTO (m-BTO) to inhibit charge migration. Under the same bias condition, the carriers are more likely to accumulate near the n-BTO than the m-BTO particles. The charge dissipation rate at the interface region in m-BTO/EP is about one order of magnitude higher than that of n-BTO/EP. This work offers experimental support for understanding the mechanism of charge transport in dielectric composites.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3