Atomistic Investigation on the Blocking Phenomenon of Crack Propagation in Cu Substrate Reinforced by CNT

Author:

Shim Jee Soo1ORCID,Beom Hyeon Gyu1

Affiliation:

1. Department of Mechanical Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea

Abstract

Recently, many researchers in the semiconductor industry have attempted to fabricate copper with carbon nanotubes for developing efficient semiconductor systems. In this work, tensile tests of a carbon-nanotube-reinforced copper specimen were conducted using the molecular statics method. The copper substrate utilized in the tensile tests had an edge half-crack, with the carbon nanotube located on the opposite side of the copper substrate. Subsequently, the effects of carbon nanotube radius were investigated. The mechanical properties of the copper/carbon nanotube composite were measured based on the simulation results, which indicated that the atomic behavior of the composite system exhibited the blocking phenomenon of crack propagation under tension. The fracture toughness of the composite system was measured using the Griffith criterion and two-specimen method, while the crack growth resistance curve of the system was obtained by varying the crack length. This study demonstrated that the mechanical reliability of copper can be improved by fabricating it with carbon nanotubes.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3