Abstract
Climate change leads to global drought-induced stress and increased plant mortality. Tree species living in rapidly changing climate conditions are exposed to danger and must adapt to new climate conditions to survive. Trees respond to changes in the environment in numerous ways. Physiological modulation at the seed stage, germination strategy and further development are influenced by many different factors. We review forest abiotic threats (such as drought and heat), including biochemical responses of plants to stress, and biotic threats (pathogens and insects) related to global warming. We then discus the varied adaptations of tree species to changing climate conditions such as seed resistance to environmental stress, improved by an increase in temperature, affinity to specific fungal symbionts, a wide range of tolerance to abiotic environmental conditions in the offspring of populations occurring in continental climate, and germination strategies closely linked to the ecological niche of the species. The existing studies do not clearly indicate whether tree adaptations are shaped by epigenetics or phenology and do not define the role of phenotypic plasticity in tree development. We have created a juxtaposition of literature that is useful in identifying the factors that play key roles in these processes. We compare scientific evidence that species distribution and survival are possible due to phenotypic plasticity and thermal memory with studies that testify that trees’ phenology depends on phylogenesis, but this issue is still open. It is possible that studies in the near future will bring us closer to understanding the mechanisms through which trees adapt to stressful conditions, especially in the context of epigenetic memory in long-lived organisms, and allow us to minimize the harmful effects of climatic events by predicting tree species’ responses or by developing solutions such as assisted migration to mitigate the consequences of these phenomena.
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献