Abstract
The greenhouse gases sequestrated by ecosystems are of great relevance to global carbon cycle and climate regulation. However, it is time-consuming and laborious to conduct sampling analysis, and it is also difficult to analyze the variation of potential sequestration of various ecosystems for greenhouse gases in China. This study used six 5-year periods of land use data for China between 1990 and 2015 to analyze the changes of three natural ecosystems (forest, grassland, and wetland). Correspondingly, the potential sequestration of the three ecosystems for three major greenhouse gases (carbon dioxide CO2, methane, and nitrous oxide) during the 25 years were simulated through a greenhouse gas value (GHGV) model. The GHGV model was found to be a reliable alternative to calculating the carbon sequestration of natural ecosystems in China. The total greenhouse gas sequestration of China’s natural ecosystems remained at around 267 Pg CO2-equivalent; however, the greenhouse gas sequestration had decreased by 3.3 Pg CO2-equivalent between 1990 and 2015. Comparison of the simulation results of the GHGV model based on the localized parameters and the model default parameters revealed that the simulated potential sequestration of the greenhouse gases for forest and wetland ecosystems (but not the grassland ecosystem) were smaller when run with localized parameters than the model default parameters. Moreover, the carbon sequestration of natural ecosystems was greater than the amount of anthropogenic carbon emissions, but the potential sequestration of natural ecosystems for greenhouse gas has become increasingly limited. Our study reveals the model can act as an important supplement for assessing the potential sequestration of the greenhouse gases for ecosystems at a regional scale.
Funder
National Natural Science Foundation of China
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献