An Inverse Design Method for Airfoils Based on Pressure Gradient Distribution

Author:

Zhang Yufei,Yan Chongyang,Chen Haixin

Abstract

An airfoil inverse design method is proposed by using the pressure gradient distribution as the design target. The adjoint method is used to compute the derivatives of the design target. A combination of the weighted drag coefficient and the target dimensionless pressure gradient is applied as the optimization objective, while the lift coefficient is considered as a constraint. The advantage of this method is that the designer can sketch a rough expectation of the pressure distribution pattern rather than a precise pressure coefficient under a certain lift coefficient and Mach number, which can greatly reduce the design iteration in the initial stage of the design process. Multiple solutions can be obtained under different objective weights. The feasibility of the method is validated by a supercritical airfoil and a supercritical natural laminar flow airfoil, which are designed based on the target pressure gradients on the airfoils. Eight supercritical airfoils are designed under different upper surface pressure gradients. The drag creep and drag divergence characteristics of the airfoils are numerically tested. The shockfree airfoil demonstrates poor performance because of a high suction peak and the double-shock phenomenon. The adverse pressure gradient on the upper surface before the shockwave needs to be less than 0.2 to maintain both good drag creep and drag divergence characteristics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3